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Abstract. We examine the discrete equation that is obtained from the Schlesinger
transformations of the continuous PairéeuWV equation. The use of the Schlesinger
transformations naturally establishes the Lax pair of the discrete equation which is an asymmetric
form of d-R and has R as continuous limit. We analyse the transformations of the discrete
equation and show that they lead to a self-dual description where the discrete equation and the
Schlesinger’s play the same role. Finally, using the relation betwgemil asymmetric d4P

we examine in detail the special solutions of both equations.

1. Introduction

The derivation of the general form of the discrete Paial@guations¥) based on the
singularity confinement [1] discrete integrability criterion led to an intriguing feature. For
most of the discret@’s the general form contains periodic terms [2]. The simplest case is
that of binary (even—odd) dependence, manifesting itself through the presence of terms of
the form (—1)* in the equation. Thus the full form of d-fs

ka + B+ y (=1

X ’
However, cases of higher (i.e. ternary, quaternary, etc) dependence are known to exist. The
standard attitude when these terms were discovered was to simply ignore them. The naive
argument was that(~1)* does not possess a continuous limit'. For equation (1.1), we
obtained the continuous limit to, By puttingy = 0 [2].

However, this approach is clearly too crude. The correct interpretation is to consider

that a different constant enters the equation for the even- and odd-numbsradd thus
write the mapping as a system where the even and odd terms are separated. We now define
X, = X2,, y» = X2,41 and introducez, = 2na + zg, With zo = 8 +@/2 andc = y — /2.
We thus obtain:

Xi—1+ Xe + Xpq1 =1+ (1.2)

Znt+c (1.22)

Yn—1t+Xp+yp =1+

In —C
Yn
We call equation (1.2) the ‘asymmetric’ d-P (The terminology perhaps needs some
explanation. At the autonomous limit — 0 the mappings (1.1) and (1.2) transfer to
Quispel-Roberts—Thompson (QRT) forms [3] which were shown to be solvable in terms of

Xn+ Y+ X1 =1+ (1.2b)
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elliptic functions. Expressions such as (1.1) wjth= 0 belong to the ‘symmetric’ QRT
family, while those such as (1.2) belong to the ‘asymmetric’ family.) However, the mapping
(1.2) is not just another form of d-PThis fact was realized for the first time in the case

of the ‘asymmetric’ d-R. In [4], we have shown that the latter system is in fact a discrete
form of the Painle& Il equation and so, it should have been called,d-FAhis does not
mean that it is equivalent to the other already known discrete form,0f2p which is in

fact ag-Py,; the two equations only have the same continuous limit. (J4#, equation

was also known to possess an ‘asymmetric’ form which was recently shown to be a discrete
form of R, [5].)

Before proceeding further let us spend a few lines to make the distinction clear between
the two types of equations we hinted at above. Equations such as (1.djfference
equations. The independent variable enters in an additive way né + zo, and thus the
mapping is a recurrence that relates the value of the function at poamdz +68. However,

a second type of equation exists. T@é>; we mentioned above is one such example, but
there are many more. For instance sevegr&l’s are known [6]:

xgxn—lxn-‘rl =1+ :Bqnxn (13)
(for 0 = 0,1, 2). Here the independent variable enters in a multiplicative way ¢"zo
and thus the mapping relates the values of the function at poiatsd z¢g*!. Equations
of this kind are called;-equations. This is sometimes emphasized through the use of the
prefix g- in the name of the equation. As a matter of fact, this is at best a half-measure. It
would have been preferable to use the symbol d-P for all the disBietend then distinguish
between difference- angtequations (whenever this distinction is crucial) by using the more
appropriate notation&-P’s andg-P’s.

Returning to the ‘asymmetric’ d;Pit is clear that the equation is interesting and
intriguing. We have two different methods for its derivation (singularity confinement [1]
and through the Schlesinger transforms of the continugug#) and both lead to exactly
the same equation. Its integrability is established beyond any doubt: its Lax pair has been
obtained in [8] (although the discrete equation associated with it was not identified at the
time). However, when we examine (1.2) more closely, some questions appear unavoidable.
This equation possesses one genuine parameter. Thus we expect it to be a form of discrete
P, (a fact that will be confirmed by our analysis in what follows). If this is the case then
‘asymmetric’ d-P must possess special solutions and aueiBind transformations which
must disappeawhen we consider the symmetric limit. Indeed, the latter corresponds to
d-R which can have neither autoaBklund transformations nor special solutions.

2. Derivation of the asymmetric d-R: Lax pair and auto-B&cklund transformations

In this section, we shall present the derivation of the asymmetri¢ stdPting from the
continuous R equation. We shall take advantage of this derivation in order to present the
deep relation that exists between continuous and disaiéferénce equations. Let us start
with the Lax pair of a continuouB. It has the general form

Ve =AY (2.1a)
V= By (2.1b)
where ¢ is the spectral parameter and B are matrices depending explicitly anand

the dependent as well as the independent variablesd:. The continuous® equation is
obtained from the compatibility conditio#,, = v, leading to

A, — B, +AB—BA=0. 2.2)
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In general, theP equation depends on parametéss g, ...) which are associated with

the monodromy exponentg; appearing explicitly in the Lax pair. The Schlesinger
transform relates two solutiong and ¥’ of the isomonodromy problem for the equation

at hand corresponding to different sets of parameterg,(...) and ¢', 8/, ...). The main
characteristic of these transforms is that the monodromy exponents (at the singularities of the
associated linear problem), related to the setg(...) and ¢/, g/, ...) differ by integers

(or half-integers). The general form of a Schlesinger transformation is

¥ =Ry (2.3)
whereR is again a matrix depending an w, ¢+ and the monodromy exponerds

The important remark is that (R:) together with (2.3) constitutéhe Lax pair of a
discrete equationThe latter is obtained from the compatibility conditions,

R.+RA—A'R=0. (2.4)

Thus the difference equations are intimately related to the continuous ones. We believe that
this result is of very wide applicability and, although this has not been done yet, that we
can obtain a classification of all difference discrete equations through their relations to the
continuous ones. This classification would have another beneficial consequence: it would
put an end to the proliferation of the discréts, since there are only so many Schlesinger’s
of continuousP’s. Still, we must bear in mind that it may well happen that some higher
Garnier problems may lead, through their Schlesinger’s, to new simple diffefénc&hus
the relation between difference and continu@s must be understood in a broader sense.
Another remark is in order at this point. While the case of difference discrete equations
seems settled, this does not encompass all discrete equations. (After all, it would have
been disappointing if all difference equations were just byproducts of continuous ones.)
There remain they-discreteP’s; these cannot be obtained from the continuous ones, but
only from higherg-P’s. Just as the Schlesinger’s of difference disci®te can generate
equations of the same type, the same holds true forgthés [9]. What makes matters
more complicated is that in contrast to the continuous case, the gen&atnier problem
has not yet been fully derived. Independently of this technical point, the argument above
reinforces the fundamental nature of the discrete equations in particular gfftiren.
After these considerations of general nature let us turn back tojthedgBation. Its Lax
pair is well known [10]:

_ 1 0 t u 1 90_1) _%
A_§<o _1>+(;2,(v—6‘o—900) —t>+§ (5_5}(”_290) —(90—1))) (2.59)

1 0 0 u

B—§<o —1)+(§(v—90—900) o>' (2.30)
The compatibility leads to

d

d—f:—4v+w2~|—2tw+400

W w +2) 2.6

g = 4w (2.6)

dv 2v2 49,

—=———+|——-w ) v+ o+ b)w

dr w w

which results in R:

o2 1 [dw)® 3 b
w (d_lf> + §w3+4tw2+2(t2+a)w +— (2.7)

a2 T 2w
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The parameters, b are related to the monodromy exponef4sé., through
a=1- 264 b= —82. (2.8)

The Schlesinger transforms ofyPdescribe the evolution of the two monodromy
exponent¥, 6. There are several transformations one can construct and the result will,
of course, depend on the one we choose. In [7], we have chosen the two Schlesinger’s
below, which turned out to be adequate for the problem at hand. We have

1 0 _ L u
_ 172 1/2 w 2
m=c (3 o) vee (1 ) 29)
corresponding to the evolutidh, = 6. — % 0o =00+ % and
0 0 _ 1 s
Ry = ¢? i v—0p—0a o N (2.10)
01 - u - 2v

associated Witlflo = 6o + 3, O = 6 + 3. Each of thery, R, leads to a discrete equation
which turns out to be the asymmetric @-Ret us start fromr, and apply the compatibility
(2.4). The result is

g:<%(r—%)+v+00—900+1>(%—%—t)_l (2.118)
— (z—ﬁ)—v+90+900. (2.11b)
w w

We putw = —2x4, v = 2(6p — YnXn) (andw = —2x,_1, v = 2(60 + % - yn—lxn—l)) and
find

%

Yo+ Ynr1 =t —x, + x_o (2.12m)
6o — 6

Xp +Xp_1=1—Yn+ 2 = (212))

2y,
where we recognize the asymmetric d€quation (1.2) (since both,, and —6y grow
linearly in n with the same coefficient under the action Ry).

For R, we have

2
B =20+ 2 —wt Lo+ 0x) 2.13)
w v

w20 + 00)? w2 w(ho + Oeo)(t + w)

_— + — — .
202 2 v

We must stress here th& induces an evolution in a direction different from that Rf;

this is why we have used the ‘bar’ and ‘tilde’ symbols. We introduce the new variables

w = —2x, andv = —2r,x,, (wherex has the same relation t0 as before but evolves in

a different direction, and is a new variable) and obtain

V=—v+tw+30+0,+1+

(2.1%)

0
Tm+Tm—1=1—Xp — _O (21‘b)
Xm
6o + 0,
X+ X1 =1t — Py — 02+ © (2.1%)
F'm

which is again the asymmetric d-PHere 6y and 6, grow linearly inm with the same
coefficient.

The relation of the variables of asymmetric dt®those of R, allows an easy derivation
of the auto-Bicklund transformation of the discrete equation. Since —w/2 in both
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cases, a poinkg exists in the evolution (2.12) andy in the evolution (2.14) where the
correspondingu’s coincide. At this point we have for the first equation,

xy = —g + 6 (2.15)
and for the second one,
v
=——. 2.16
xr > ( )
Eliminating the variabley of the continuous equation we obtain
xy = xr + 0. (2.17)

This is an auto-Bcklund of the asymmetric drlequation since it relates the couple y) to
the couple(x, r). In the same spirit one can derive all of the autacBlund transformations
that we shall use in the next section.

Before proceeding further let us show that the asymmetri¢ &;FAn fact, a discrete
form of d-R,. The continuous limit of (1.2) can be obtained through= 1 + ew + €2u,
y=1—ew+e%u,t =2,¢c=e3u/4 andz, = 1+ €3n leading ate — 0 to

2
‘ZTf =2wd+sw—(u+3) (2.18)

where the continuous variable is given by= en andu = (w? + w' + 5/2)/4.

3. A self-dual description of the asymmetric d-P and its Schlesinger’'s

As we have already shown in [9], the discrétes are characterized by the property of
self-duality. This means that the same equation governs the evolution both along the
discrete independent variable and along changes of the parameters of the equation induced
by Schlesinger transformations. We have already pointed out that this is possible only
when we consider the full freedom of the equation without adyhocrestrictions. In what
follows, we shall present the self-dual description of the asymmetricvdhieh as we shall
see has a very particular geometry.

We start from system (1.2) which we rewrite here:

Zn+ ¢
Yn-1t+Xn+Yu=t+—— (31&)

Xp
in —C
Yn
In order to simplify the presentation (and in view of the geometry to be introduced below)
we shall use the shorthand notatign=y, y,+1 = y, y,—1 = y and similarly forx. System
(3.1) defines the evolution of the variablesy in the n direction, along the independent
discrete variable.

The dual equation to (3.1) would be the one concerning the evolution along- the
direction. It turns out that the geometry in the case of the asymmetrjciglfRore subtle.
First we must introduce an auxiliary (dependent) variablehich will be related tox and
y. Next, instead of considering two orthogonal directions of evolution alomad c, we
consider three directions but still in a two-dimensional plane. One is the directionboit
the other two are at-27/3 and correspond thus to a mixture mfand ¢. Following our
shorthand notations, we will denote evolution along thé32line by x, § (andx, y in the
backward direction), while for the evolution along th@r/3 line we shall use the notation
X, y, andx, y. The precise geometry is given in figure 1. Note that the three directions

XpF VX1 =1+ (3.1b)
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Figure 1. The geometry of the, y, r plane.

being linearly dependent one has, for instarce x. The variablest, y ‘live’ on a line
parallel to then-axis corresponding to + «/2 rather tharr. In fact, their coordinates are
(z—a/2,c+a/2) for x and(z +«/2, c +a/2) for y. Note that in (3.1x + ¢ andz —c are
respectively the sums and differences of the coordinates of their respective denominators
andy.

The auxiliary functiorr, on the other hand, lies on a parallel to thaxis labelled by
exactly and can only define an evolution along the two oblique axes. We shall not present
all the details here concerning the derivation-dfut will give the final result. We have

xr=xr=xy—(z+¢) 3.2)
ry=yr=xr+2c=xy—(z—c). 3.3)

How can one construct the Schlesinger transformations using these expressions? It is clear
from figure 1 that having, y, we can compute and from(x, r) we can obtainy which
lies on a line parallel to the-axis labelled by — «/2. We have

§= Pl Sl (3.4)
xy —(z+0¢)

X = yw (3.5)

- xy —(z—o)

and, of courseyy = xy. The new equations (where we have used y) now read

~ +

y+gc+y=t+zxc (3.69)

i+§+g:t+%. (3.6)

Comparing (3.6) with (3.1) it is now straightforward to check that the value lods been
shifted by —a from ¢ + «/2 to ¢ — @/2. Indeed in (3.6% + ¢ andz — ¢ are respectively
the sums and differences of the coordinates of the respective denominatodsy, which
shows that the value of the second coordinate is newa /2.

In order to investigate self-duality we consider the equation relatigd» along an
oblique line. We find

Z+c
X

r+x4+r=t-— (3.7a)
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Figure 2. The z-function plane.

2
xtr+i=1-2= (3.70)
r

Owing to the particular geometry of the asymmetric ,d-Belf-duality cannot quite be
assessed at first glance from (3.3)—(3.7). Still, it is present as we shall explain now. Let
us define a coordinate system associated withnttaend ¢ evolutions. The units on each
axis are such that the abscissa ig 23 and the ordinate2 If we start with (37b) we
remark that the numerator (ovey is —2c. This is precisely the opposite of the ordinate of
the horizontal line that intersects the (oblique) evolution line.aSimilarly, the numerator
—(z+c) overx in (3.7a) is just, in the appropriate axis system rotated by2, the ordinate
(not its opposite) of the other oblique line that intersects the evolution line elf-duality
is now clear. Equation (3.3) corresponds to a rotation py32of the direction of evolution.
The ordinates of the intersecting linesxaand y are respectively-(z +c¢) and(z —c). The
reason why the numerator overin (3.3a) is (z + ¢) rather than its opposite is related to
the angle 2/3 rather than—27/3 between the evolution line and the line intersecting it,
just as we already encountered in73.

We now introduce the-functions through

N

(3.8)

Hlﬁ)

T
y=— and r=
T

3
|

Superposing figures 1 and 2 one can see that each nonlinear variable lies at the
centre of a diamond shape, the two nearest-neighbourigre those appearing in the
denominator, while the two next-nearest ones appear at the numerator.

Next, we express the Miura (3.2) and (3.3) in bilinear form and find

Tt — Tt = —(z + )12 (3.9)
Tt — 11 = (z — ¢)7? (3.%)
tr — T = 2c7°. (3.%)

As expected the Hirota—Miwa [11] (discrete Toda) equation is the bilinear Schlesinger. Self-
duality can be readily assessed in (3.9). If we start witBdBve remark that the coefficient

of 72 is the ordinate 2 conjugate to the abscissa along the direction, (namely the horizontal
one, labelled by the bar) that does not appear in the left-hand side. Equati®msb}3
correspond to rotations of the direction of evolution-hgr/3.
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4. The special solutions of asymmetric d-Pand their relations to those of Ry

The construction of the special solutions of the asymmetri¢ deation is based for the
major part on the special solutions of the continuows Ret us start with the case where
asymmetric d-Pis linearizable. (As we have already shown in previous works, all d-P’s,
except for the various symmetric ¢*® do possess special solutions of this type.) The
linearizable solutions are obtained for particular values of the parameters of the discrete
equation at hand.

The general method for the construction of these special solutions has been explained in
detail in [12]. Here we shall obtain these solutions by using a simple trick. We start from
(1.2p) and assume that/3, appearing in the right-hand side is proportionakta(in which
case (12b) and also (12a) become linear). Comparing.@u) with (1.2b) we find that these
two equations are indeed compatible provided 0. We then find equatiog,_1 + x, = ¢
and its upshift. Putting,, = A,/A,_1, we can linearize the latter to

Apt1 —tA, + 2, A1 = 0. (41)

This is a discrete form of the Airy equation (already encountered in [13]). However, since
x is, up to a numerical factor, the solution of,Pthis equation must also characterize the
special solutions of the latter. In order to make the comparison more transparent, we will
assume here that= % which can be ensured with the appropriate scaling of equation (1.2).
Then (4.1) is preciselthe recursion formula of the Hermite functioaad thusA,, is nothing

but the Hermite functiong?,, .

The functionsH, (of index z = n + zg, With zo in generalnot an integer) are known
to be related to the special solutions gf P14]. Let us give here another property of the
Hermite functions that will be useful in what follows. We have the differential relation,

dH,
dt
As far as the discrete equation is concernéds defined for agivenvalue ofz, which is
just a parameter. However, it turns out that we can consistently choasdéfsendence to
be exactly the one given by (4.2) in which case the correspondence between discrete and
continuous is perfect. This can be done by takingrtladerivative of (4.1), using (4.2) and
its upshift to write everything in terms of,, leading to a differential equation which is just
the Hermite equation.

Higher special solutions do also exist for different parameter values. They can
be expressed, in general, as ratios of Casorati determinants (involving the same
Hermite/discrete-Airy functions) [15]. The key element here is thieinction appearing
in the bilinear formalism. The construction will be easily understood in the self-dual setting
we introduced in the previous section. We start by assuming that’th@anish on the
lower half @, ¢)-plane, and that there exists a first nonvanishing line’sfcompatible with
equation (3c¢) which means that must be zero on this line, given that the line below this
line consists only of vanishing’s. Let us assume that thefunctions on thec = 0O line
have the valueg,. From (39, b) we have

¢n+1¢n—1 = anﬁ,f (43)

(sincec = 0). Moreover, we can freely choose two of s to be equal to unity, say, 1
andg,. In this case we have, 1 = z,, du—2 = Zu—1, Pur2 = 22Tn41, Pu—3 = 25_12n-2- .-

and so on. Next, we assume that = ¢,A,, which, using (3.16) leads to the already
obtained results, = A,/A,_1 andy, = z,/x, = z,A,_1/A,. In order to obtain the
‘higher’ solutions it is more convenient to return to a notation where the shifts become

= ZHZ—]-' (42)
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explicit. Starting fromz, atz, andc = 0, we havet, = t(z, — 3. 3), 1, = 1(z, + 3. D).
Similarly t,, k-times shifted in the hat-direction, is(z, — k/2, k/2), while if k-times
shifted in the down tilde-direction we obtain(z, + k/2, k/2). (Remember = % and thus
Zne1 — z2n = 1.) The latter has the same prefacgal) asz(z, 0). Up to this prefactor, this
z-function can be written as a Casorati determinant as follows

A, Apv1 oo Apk—1
A, :
T(zn +k/2.k/2) =) | T : (4.4)
Apye-1 .- Anyor—2

(Note thatt(z, — k/2,k/2) has A,_1 on the antidiagonal, and indeetj = 7,1 =
¢n—1A,-1.) What is interesting is that once thefunctions are expressed in terms of
Casorati determinants we can construct the solutions of both asymmetriaratiR, since
the variablex is (essentially) the same for both equations.

Up to now, we have worked with a generic, noninteggmwhich means that the Hermite
functions, introduced above, do not degenerate. Howevefasymmetric d-Ppossesses
two different families of interesting solutions in the particular casentéger zo. First,
let us assume that for some valuemofve havez, = 1, which means that,_; = 0. In
this case, all of the's at the left-hand side of the tilde-axis vanish. This means that the
only nonvanishing’s are those lying in ar/3 sector delimited by the bar- and the negative
tilde-axes. In order to obtain thefunctions we start by computing th&s which lie on the
first line parallel to the bar-axis. We choodg_; = 1 andA, = (so as to be compatible
with (4.2) sincez, = 1). This leads tad, ;1 = 1> — 1, Ao = 13 — 3, i.e. the Hermite
polynomials. (Note that thel’s with indices inferior ton — 1 cannot be determined, but
since the corresponding’s vanish, this indeterminacy is of no consequence.) Using the
A’s as basic elements we can compute tfethrough the Casorati (4.4). The latter, we
stress once more, provide the rational solutions to bathB6] and asymmetric d-P

The second type of special solutions is obtained with a similar assumption. This time
we assume that, = 0 which means that all th¢’s to the right-hand side of the tilde-axis
vanish. Thus the nonvanishings live in a 2r/3 sector between the negative bar- and the
negative tilde-axes. For the last nonvanishingve can choose the normalizatiap = 1
(and thusA, = 1). For the firstvanishing z, namelyz,,1, we have of course,,; = 0,
becausep,.1 = 0, but A,,; does not vanish. Using relation (4.1) we find readily that in
fact A,.1 = ¢ sincez, = 0, and this is indeed compatible with (4.2). We can downshift
both (4.1) and (4.2) and obtain a first-order differential equation4fpr;. We find

2 dE 2
A1 =—€?E with o= e /2 (4.5)

i.e. E is an error-function [17]. Oncd,_; is obtained, we can compute all of the remaining
A’s by simple differentiation through (4.2) and thus this solution gf/&#&ymmetric d-P
involves nothing but error-functions and exponentials. Again, as in the case of the Hermite
polynomials, the construction of the ‘higher error-functions’ solutions is straightforward if
one uses the Casorati (4.4).

All of the solutions we have obtained up to now belong to the linearizable class which
exist for integer and half-integer values af Whenever the independent variaklealso
takes integer values (this means that the offgebf the origin must be an integer) the
solution either involves the error-function or even becomes rational. However, these rational
solutions are not the only ones fog/Rasymmetric d-P Another family of rational solutions
does exist, outside the linearizable class. These rational solutions exist for intagde
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t%9-1/3 t/3 t2/9+1/3
t2/9+1/3 1 t2/9-1/3
O
1
t/3 t/3
t2/9-1/3 t2/9+1/3

Figure 3. The simplestr-functions for the construction of rational solutions. T®edenotes
the origin of thez, ¢ coordinates.

of the formc¢ = m — o /3 with integerm, and also for half-integer andc = m + o/6, with

o =1loro = —1. Infigure 3 (drawn for = 1) we present the simplestfunctions of these
rational solutions. It is clear that through a global scaling and the two available gauges we
can choose the threefunctions nearest to the origin to have valaes 1. Next we have the
three next-nearest neighbours which are all taken to be equal (which means that the solution
is of codimension two), and depend in principle on the parameteBince the bilinear
equation (3.9) does not involve we can take this common value arbitrarily. Returning
from the 7’s to the x, y, r we reconstruct (3.1) we obtain on the right-hand side instead
of ¢ the triple of the assumed common value of #is. Thus this value must be exactly
t/3. Using these seed solutions we can construct the higtfienctions by iterating (3.9).
Because (3.9) is a Hirota—Miwa equation satisfying the singularity confinement criterion the
obtainedt’s turn out to be polynomials in i.e. the necessary factorizations do occur. Note
that since both figure 3 and (3.9) are invariant undek2ar /3 rotation, this will be true

of the wholez-plane. Thus one has(z, ¢) = t((—z £ 3¢)/2, (—c F z)/2) (recall that the
orthonormal values of the coordinates atg 23 and 2 respectively). On the other hand
(3.9) does not have a reflection symmetry and thus in genérat, ¢) # t(z, ¢) though a
relation exists between these quantities namely,

t(=z, ;1) = (=) V1(z, ;i) (4.6)
where N is their common degree. We obtain the followint:
13.9)=1-3=10-H=1 (4.7a)
10,9 =11 -H=1(-1-3=1/3 (4.1)
tLYH=1G -H=1-3H=r%9+1 (4.7)
(L3 =1-3-D=:&H=r*9-1 (4.7d)
From now on we will use the shortharfd= ¢2/3:
1, h=1F D =12 -3 =T*+2r-1)/9 (4.70)
12,3 =1(-23=1(0-3) =t(T*-5)/27 4.7
13, ) =1(£1 -3 =1(F2, 1 = (T3 £ 57% + 5T £ 5)/27 (4.7)

10,9 =13, -2 =1(-2,-2) = (" - 141° - 7)/81 (4.h)
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T(£1, ) = 1(£2, - %) = ©(F3, —-}) = 1(T* £ 873 + 1472 - 35)/243 4.7)
13, ) =13 -1 =13, )

= (T° £ 57* - 1073 F 5072 — 75T + 25)/243 4.7)
T(#£2,3) = t(+3, —13) = 1(F35. 3)

= (T%+147° + 657* + 14073 4 17572 & 3507 + 175/3° (4.7)

T(£3.5) = T3, —3) = 1(F5. )
= (T" £ 775 — 217° £ 1751* — 24573 + 24512 — 7357 £ 245/3"  (4.7)
1. =140 =10 -% = (1% - 607° 4+ 550r* — 5500r* — 1375/3°  (4.7m)
(3. ) =1(£3. -1 = 1(F4.—3)
= (T8 4+ 2077 + 1407 + 4207° + 3507* F 98073
—49007'2 49007 + 1225/38. (4.7)

Note in that (47f), (4.7h) and (47m) one hasr (3¢, ¢) = t(—3c, ¢), but this is related to
the fact that these points correspond to each other, not only by a reflection, but also by a
rotation by 2r/3, as for (47a, b).

In contrast to the case of the linearizable solutions, we cannot give a Casorati form for
the higherr’s.

One interesting thing is that the degree of thas a polynomial irr can be explicitly
constructed. We find that for a point with coordinatesc) we haveN = (942 — 4)/12,
whered is the distance to the origind? = 4z2/3 4 4¢? (since the orthonormal values of
the coordinates arez2v/3 and 2 respectively). This degree, however, does not uniquely
characterize the polynomial. We have already (1, %) # 1(-1, %), though these twa’s
are related by (4.6), as we said earlier. However, the situation is even more complicated
since we can find polynomials with the same degree but without any relation. This occurs
for the first time atV = 16 as can be seen in.#u, n).

5. Conclusion

This paper deals with the derivation of the asymmetric| ce®uation starting from the
continuous K. This relation is not limited to these particular equations. As a matter of
fact, all of the discretedifferencePainle\e equations can be obtained from the Schlesinger’s
of the continuous ones. This leads quite naturally to the Lax pair of the d-P’s. Moreover this
procedure produces the most general form of tlifetere the ‘asymmetric’ d4P no degree

of freedom is lost. This construction explains the property of self-duality and provides
the basis of the classification of thePds. However one must keep in mind that for the

full classification ofall the d#'s one may have to consider higher (continuous) Garnier
problems. Moreover there exists a class of discrete equations, the (multiplicgtiv’s)
which are outside this approach. One interesting result of the self-dual approach is that the
Hirota—Miwa equation is omnipresent. This is in perfect parallel to the appearance of the
Toda equation in Okamoto’s descriptionwkequences [18]. Finally the parallel description

of the continuous and discrete Pairéesquations we presented here allows a simultaneous
construction of the special solutions of both. It should be interesting to extend this approach
to the remaining discrete Painkequations.
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