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Abstract. We examine the discrete equation that is obtained from the Schlesinger
transformations of the continuous Painlevé IV equation. The use of the Schlesinger
transformations naturally establishes the Lax pair of the discrete equation which is an asymmetric
form of d-PI and has PII as continuous limit. We analyse the transformations of the discrete
equation and show that they lead to a self-dual description where the discrete equation and the
Schlesinger’s play the same role. Finally, using the relation between PIV and asymmetric d-PI
we examine in detail the special solutions of both equations.

1. Introduction

The derivation of the general form of the discrete Painlevé equations (P) based on the
singularity confinement [1] discrete integrability criterion led to an intriguing feature. For
most of the discreteP’s the general form contains periodic terms [2]. The simplest case is
that of binary (even–odd) dependence, manifesting itself through the presence of terms of
the form(−1)k in the equation. Thus the full form of d-PI is

Xk−1+Xk +Xk+1 = t + kα + β + γ (−1)k

Xk
. (1.1)

However, cases of higher (i.e. ternary, quaternary, etc) dependence are known to exist. The
standard attitude when these terms were discovered was to simply ignore them. The naive
argument was that ‘(−1)k does not possess a continuous limit’. For equation (1.1), we
obtained the continuous limit to PI by puttingγ = 0 [2].

However, this approach is clearly too crude. The correct interpretation is to consider
that a different constant enters the equation for the even- and odd-numberedx’s and thus
write the mapping as a system where the even and odd terms are separated. We now define
xn = X2n, yn = X2n+1 and introducezn = 2nα + z0, with z0 = β + α/2 andc = γ − α/2.
We thus obtain:

yn−1+ xn + yn = t + zn + c
xn

(1.2a)

xn + yn + xn+1 = t + zn − c
yn

. (1.2b)

We call equation (1.2) the ‘asymmetric’ d-PI. (The terminology perhaps needs some
explanation. At the autonomous limitα → 0 the mappings (1.1) and (1.2) transfer to
Quispel–Roberts–Thompson (QRT) forms [3] which were shown to be solvable in terms of
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elliptic functions. Expressions such as (1.1) withγ = 0 belong to the ‘symmetric’ QRT
family, while those such as (1.2) belong to the ‘asymmetric’ family.) However, the mapping
(1.2) is not just another form of d-PI. This fact was realized for the first time in the case
of the ‘asymmetric’ d-PII . In [4], we have shown that the latter system is in fact a discrete
form of the Painlev́e III equation and so, it should have been called d-PIII . This does not
mean that it is equivalent to the other already known discrete form of PIII [2] which is in
fact aq-PIII ; the two equations only have the same continuous limit. (Theq-PIII equation
was also known to possess an ‘asymmetric’ form which was recently shown to be a discrete
form of PVI [5].)

Before proceeding further let us spend a few lines to make the distinction clear between
the two types of equations we hinted at above. Equations such as (1.1) aredifference
equations. The independent variable enters in an additive way:zn = nδ + z0, and thus the
mapping is a recurrence that relates the value of the function at pointsz andz±δ. However,
a second type of equation exists. Theq-PIII we mentioned above is one such example, but
there are many more. For instance severalq-PI ’s are known [6]:

xσn xn−1xn+1 = 1+ βqnxn (1.3)

(for σ = 0, 1, 2). Here the independent variable enters in a multiplicative wayz = qnz0

and thus the mapping relates the values of the function at pointsz and zq±1. Equations
of this kind are calledq-equations. This is sometimes emphasized through the use of the
prefix q- in the name of the equation. As a matter of fact, this is at best a half-measure. It
would have been preferable to use the symbol d-P for all the discreteP’s and then distinguish
between difference- andq-equations (whenever this distinction is crucial) by using the more
appropriate notationsδ-P’s andq-P’s.

Returning to the ‘asymmetric’ d-PI it is clear that the equation is interesting and
intriguing. We have two different methods for its derivation (singularity confinement [1]
and through the Schlesinger transforms of the continuous PIV [7]) and both lead to exactly
the same equation. Its integrability is established beyond any doubt: its Lax pair has been
obtained in [8] (although the discrete equation associated with it was not identified at the
time). However, when we examine (1.2) more closely, some questions appear unavoidable.
This equation possesses one genuine parameter. Thus we expect it to be a form of discrete
PII (a fact that will be confirmed by our analysis in what follows). If this is the case then
‘asymmetric’ d-PI must possess special solutions and auto-Bäcklund transformations which
must disappearwhen we consider the symmetric limit. Indeed, the latter corresponds to
d-PI which can have neither auto-Bäcklund transformations nor special solutions.

2. Derivation of the asymmetric d-PI : Lax pair and auto-Bäcklund transformations

In this section, we shall present the derivation of the asymmetric d-PI starting from the
continuous PIV equation. We shall take advantage of this derivation in order to present the
deep relation that exists between continuous and discrete (difference) equations. Let us start
with the Lax pair of a continuousP. It has the general form

ψζ = Aψ (2.1a)

ψt = Bψ (2.1b)

where ζ is the spectral parameter andA, B are matrices depending explicitly onζ and
the dependent as well as the independent variablesw and t . The continuousP equation is
obtained from the compatibility conditionψζt = ψtζ leading to

At − Bζ + AB − BA = 0. (2.2)
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In general, theP equation depends on parameters(α, β, . . .) which are associated with
the monodromy exponentsθi appearing explicitly in the Lax pair. The Schlesinger
transform relates two solutions9 and9 ′ of the isomonodromy problem for the equation
at hand corresponding to different sets of parameters (α, β, . . .) and (α′, β ′, . . .). The main
characteristic of these transforms is that the monodromy exponents (at the singularities of the
associated linear problem), related to the sets (α, β, . . .) and (α′, β ′, . . .) differ by integers
(or half-integers). The general form of a Schlesinger transformation is

ψ ′ = Rψ (2.3)

whereR is again a matrix depending onζ , w, t and the monodromy exponentsθi .
The important remark is that (2.1a) together with (2.3) constitutethe Lax pair of a

discrete equation. The latter is obtained from the compatibility conditions,

Rζ + RA− A′R = 0. (2.4)

Thus the difference equations are intimately related to the continuous ones. We believe that
this result is of very wide applicability and, although this has not been done yet, that we
can obtain a classification of all difference discrete equations through their relations to the
continuous ones. This classification would have another beneficial consequence: it would
put an end to the proliferation of the discreteP’s, since there are only so many Schlesinger’s
of continuousP’s. Still, we must bear in mind that it may well happen that some higher
Garnier problems may lead, through their Schlesinger’s, to new simple differenceP’s. Thus
the relation between difference and continuousP’s must be understood in a broader sense.

Another remark is in order at this point. While the case of difference discrete equations
seems settled, this does not encompass all discrete equations. (After all, it would have
been disappointing if all difference equations were just byproducts of continuous ones.)
There remain theq-discreteP’s; these cannot be obtained from the continuous ones, but
only from higherq-P’s. Just as the Schlesinger’s of difference discreteP’s can generate
equations of the same type, the same holds true for theq-P’s [9]. What makes matters
more complicated is that in contrast to the continuous case, the generalq-Garnier problem
has not yet been fully derived. Independently of this technical point, the argument above
reinforces the fundamental nature of the discrete equations in particular of theq-form.

After these considerations of general nature let us turn back to the PIV equation. Its Lax
pair is well known [10]:

A = ζ
(

1 0
0 −1

)
+
(

t u
2
u
(v − θ0− θ∞) −t

)
+ ζ−1

(
θ0− v − uw

2
2v
uw
(v − 2θ0) −(θ0− v)

)
(2.5a)

B = ζ
(

1 0
0 −1

)
+
(

0 u
2
u
(v − θ0− θ∞) 0

)
. (2.5b)

The compatibility leads to

dw

dt
= −4v + w2+ 2tw + 4θ0

du

dt
= −u(w + 2t)

dv

dt
= −2v2

w
+
(

4θ0

w
− w

)
v + (θ0+ θ∞)w

(2.6)

which results in PIV :

d2w

dt2
= 1

2w

(
dw

dt

)2

+ 3

2
w3+ 4tw2+ 2(t2+ a)w + b

w
. (2.7)
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The parametersa, b are related to the monodromy exponentsθ0, θ∞ through

a = 1− 2θ∞ b = −8θ2
0 . (2.8)

The Schlesinger transforms of PIV describe the evolution of the two monodromy
exponentsθ0, θ∞. There are several transformations one can construct and the result will,
of course, depend on the one we choose. In [7], we have chosen the two Schlesinger’s
below, which turned out to be adequate for the problem at hand. We have

R1 = ζ 1/2

(
1 0
0 0

)
+ ζ−1/2

(
v
w

u
2

2v
uw

1

)
(2.9)

corresponding to the evolutionθ∞ = θ∞ − 1
2, θ0 = θ0+ 1

2, and

R2 = ζ 1/2

(
0 0
0 1

)
+ ζ−1/2

(
1 uw

2v

− v−θ0−θ∞
u

−w(v−θ0−θ∞)
2v

)
(2.10)

associated with̃θ0 = θ0+ 1
2, θ̃∞ = θ∞ + 1

2. Each of theR1, R2 leads to a discrete equation
which turns out to be the asymmetric d-PI. Let us start fromR1 and apply the compatibility
(2.4). The result is

w =
(

2v

w

(
t − v

w

)
+ v + θ0− θ∞ + 1

)( v
w
− w

2
− t
)−1

(2.11a)

v = −2v

w

(
t − v

w

)
− v + θ0+ θ∞. (2.11b)

We putw = −2xn, v = 2(θ0 − ynxn) (andw = −2xn−1, v = 2(θ0 + 1
2 − yn−1xn−1)) and

find

yn + yn+1 = t − xn + θ0

xn
(2.12a)

xn + xn−1 = t − yn + θ0− θ∞
2yn

(2.12b)

where we recognize the asymmetric d-PI equation (1.2) (since bothθ∞ and −θ0 grow
linearly in n with the same coefficient under the action ofR1).

For R2 we have

w̃ = −2t + 2v

w
− w + w

v
(θ0+ θ∞) (2.13a)

ṽ = −v + tw + 3θ0+ θ∞ + 1+ w
2(θ0+ θ∞)2

2v2
+ w

2

2
− w(θ0+ θ∞)(t + w)

v
. (2.13b)

We must stress here thatR2 induces an evolution in a direction different from that ofR1;
this is why we have used the ‘bar’ and ‘tilde’ symbols. We introduce the new variables
w = −2xm andv = −2rmxm (wherex has the same relation tow as before but evolves in
a different direction, andr is a new variable) and obtain

rm + rm−1 = t − xm − θ0

xm
(2.14a)

xm + xm+1 = t − rm − θ0+ θ∞
2rm

(2.14b)

which is again the asymmetric d-PI. Here θ0 and θ∞ grow linearly inm with the same
coefficient.

The relation of the variables of asymmetric d-PI to those of PIV allows an easy derivation
of the auto-B̈acklund transformation of the discrete equation. Sincex = −w/2 in both
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cases, a pointn0 exists in the evolution (2.12) andm0 in the evolution (2.14) where the
correspondingw’s coincide. At this point we have for the first equation,

xy = −v
2
+ θ0 (2.15)

and for the second one,

xr = −v
2
. (2.16)

Eliminating the variablev of the continuous equation we obtain

xy = xr + θ0. (2.17)

This is an auto-B̈acklund of the asymmetric d-PI equation since it relates the couple(x, y) to
the couple(x, r). In the same spirit one can derive all of the auto-Bäcklund transformations
that we shall use in the next section.

Before proceeding further let us show that the asymmetric d-PI is, in fact, a discrete
form of d-PII . The continuous limit of (1.2) can be obtained throughx = 1+ εw + ε2u,
y = 1− εw + ε2u, t = 2, c = ε3µ/4 andzn = 1+ ε3n leading atε → 0 to

d2w

ds2
= 2w3+ sw − (µ+ 1

2) (2.18)

where the continuous variable is given bys = εn andu = (w2+ w′ + s/2)/4.

3. A self-dual description of the asymmetric d-PI and its Schlesinger’s

As we have already shown in [9], the discreteP’s are characterized by the property of
self-duality. This means that the same equation governs the evolution both along the
discrete independent variable and along changes of the parameters of the equation induced
by Schlesinger transformations. We have already pointed out that this is possible only
when we consider the full freedom of the equation without anyad hocrestrictions. In what
follows, we shall present the self-dual description of the asymmetric d-PI which as we shall
see has a very particular geometry.

We start from system (1.2) which we rewrite here:

yn−1+ xn + yn = t + zn + c
xn

(3.1a)

xn + yn + xn+1 = t + zn − c
yn

. (3.1b)

In order to simplify the presentation (and in view of the geometry to be introduced below)
we shall use the shorthand notationyn = y, yn+1 = ȳ, yn−1 = y¯

and similarly forx. System
(3.1) defines the evolution of the variablesx, y in the n direction, along the independent
discrete variable.

The dual equation to (3.1) would be the one concerning the evolution along thec-
direction. It turns out that the geometry in the case of the asymmetric d-PI is more subtle.
First we must introduce an auxiliary (dependent) variabler, which will be related tox and
y. Next, instead of considering two orthogonal directions of evolution alongn and c, we
consider three directions but still in a two-dimensional plane. One is the direction ofn, but
the other two are at±2π /3 and correspond thus to a mixture ofn and c. Following our
shorthand notations, we will denote evolution along the 2π /3 line by x̂, ŷ (andxˆ , yˆ

in the
backward direction), while for the evolution along the−2π /3 line we shall use the notation
x̃, ỹ, andx˜ , y˜

. The precise geometry is given in figure 1. Note that the three directions
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Figure 1. The geometry of thex, y, r plane.

being linearly dependent one has, for instanceˆ̄x = x˜ . The variablesx, y ‘live’ on a line
parallel to then-axis corresponding toc + α/2 rather thanc. In fact, their coordinates are
(z−α/2, c+α/2) for x and(z+α/2, c+α/2) for y. Note that in (3.1)z+ c andz− c are
respectively the sums and differences of the coordinates of their respective denominatorsx

andy.
The auxiliary functionr, on the other hand, lies on a parallel to then-axis labelled byc

exactly and can only define an evolution along the two oblique axes. We shall not present
all the details here concerning the derivation ofr but will give the final result. We have

xr = xˆ r̄ = xy − (z+ c) (3.2)

rỹ = yr̄ = xr + 2c = xy − (z− c). (3.3)

How can one construct the Schlesinger transformations using these expressions? It is clear
from figure 1 that havingx, y, we can computer and from(x, r) we can obtainỹ which
lies on a line parallel to then-axis labelled byc − α/2. We have

ỹ = x xy − (z− c)
xy − (z+ c) (3.4)

xˆ = y
xy − (z+ c)
xy − (z− c) (3.5)

and, of course,xˆ ỹ = xy. The new equations (where we have used˜̄y = y
ˆ

) now read

ỹ + xˆ + yˆ
= t + z+ c

xˆ
(3.6a)

x̃ + ỹ + xˆ = t +
z− c
ỹ

. (3.6b)

Comparing (3.6) with (3.1) it is now straightforward to check that the value ofc has been
shifted by−α from c + α/2 to c − α/2. Indeed in (3.6)z + c and z − c are respectively
the sums and differences of the coordinates of the respective denominatorsxˆ and ỹ, which
shows that the value of the second coordinate is nowc − α/2.

In order to investigate self-duality we consider the equation relatingx and r along an
oblique line. We find

r˜ + x + r = t −
z+ c
x

(3.7a)
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Figure 2. The τ -function plane.

x + r + x̃ = t − 2c

r
. (3.7b)

Owing to the particular geometry of the asymmetric d-PII , self-duality cannot quite be
assessed at first glance from (3.3)–(3.7). Still, it is present as we shall explain now. Let
us define a coordinate system associated with then and c evolutions. The units on each
axis are such that the abscissa is 2z/

√
3 and the ordinate 2c. If we start with (3.7b) we

remark that the numerator (overr) is −2c. This is precisely the opposite of the ordinate of
the horizontal line that intersects the (oblique) evolution line atr. Similarly, the numerator
−(z+c) overx in (3.7a) is just, in the appropriate axis system rotated by 2π/3, the ordinate
(not its opposite) of the other oblique line that intersects the evolution line atx. Self-duality
is now clear. Equation (3.3) corresponds to a rotation by 2π/3 of the direction of evolution.
The ordinates of the intersecting lines atx andy are respectively−(z+ c) and(z− c). The
reason why the numerator overx in (3.3a) is (z + c) rather than its opposite is related to
the angle 2π/3 rather than−2π/3 between the evolution line and the line intersecting it,
just as we already encountered in (3.7b).

We now introduce theτ -functions through

x = τ¯ τ˜
τ τ̂

y = τ̄ τ̂

τ τ˜
and r = τ̂ τ̃

τ τ¯
. (3.8)

Superposing figures 1 and 2 one can see that each nonlinear variablex, y, r lies at the
centre of a diamond shape, the two nearest-neighbouringτ ’s are those appearing in the
denominator, while the two next-nearest ones appear at the numerator.

Next, we express the Miura (3.2) and (3.3) in bilinear form and find

τ̃ τ˜ − τ̄ τ¯ = −(z+ c)τ
2 (3.9a)

τ̄ τ¯ − τ̂ τˆ = (z− c)τ
2 (3.9b)

τ̂ τˆ − τ̃ τ˜ = 2cτ 2. (3.9c)

As expected the Hirota–Miwa [11] (discrete Toda) equation is the bilinear Schlesinger. Self-
duality can be readily assessed in (3.9). If we start with (3.9c) we remark that the coefficient
of τ 2 is the ordinate 2c conjugate to the abscissa along the direction, (namely the horizontal
one, labelled by the bar) that does not appear in the left-hand side. Equations (3.9a, b)
correspond to rotations of the direction of evolution by±2π/3.
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4. The special solutions of asymmetric d-PI and their relations to those of PIV

The construction of the special solutions of the asymmetric d-PI equation is based for the
major part on the special solutions of the continuous PIV . Let us start with the case where
asymmetric d-PI is linearizable. (As we have already shown in previous works, all d-P’s,
except for the various symmetric d-PI ’s, do possess special solutions of this type.) The
linearizable solutions are obtained for particular values of the parameters of the discrete
equation at hand.

The general method for the construction of these special solutions has been explained in
detail in [12]. Here we shall obtain these solutions by using a simple trick. We start from
(1.2b) and assume that 1/yn appearing in the right-hand side is proportional toxn (in which
case (1.2b) and also (1.2a) become linear). Comparing (1.2a) with (1.2b) we find that these
two equations are indeed compatible providedc = 0. We then find equationyn−1+ xn = t
and its upshift. Puttingxn = An/An−1, we can linearize the latter to

An+1− tAn + znAn−1 = 0. (4.1)

This is a discrete form of the Airy equation (already encountered in [13]). However, since
x is, up to a numerical factor, the solution of PIV , this equation must also characterize the
special solutions of the latter. In order to make the comparison more transparent, we will
assume here thatα = 1

2, which can be ensured with the appropriate scaling of equation (1.2).
Then (4.1) is preciselythe recursion formula of the Hermite functionsand thusAn is nothing
but the Hermite functionsHzn .

The functionsHz (of index z = n + z0, with z0 in generalnot an integer) are known
to be related to the special solutions of PIV [14]. Let us give here another property of the
Hermite functions that will be useful in what follows. We have the differential relation,

dHz
dt
= zHz−1. (4.2)

As far as the discrete equation is concerned,A is defined for agiven value of t , which is
just a parameter. However, it turns out that we can consistently choose itst dependence to
be exactly the one given by (4.2) in which case the correspondence between discrete and
continuous is perfect. This can be done by taking thet derivative of (4.1), using (4.2) and
its upshift to write everything in terms ofAn leading to a differential equation which is just
the Hermite equation.

Higher special solutions do also exist for different parameter values. They can
be expressed, in general, as ratios of Casorati determinants (involving the same
Hermite/discrete-Airy functions) [15]. The key element here is theτ -function appearing
in the bilinear formalism. The construction will be easily understood in the self-dual setting
we introduced in the previous section. We start by assuming that theτ ’s vanish on the
lower half (z, c)-plane, and that there exists a first nonvanishing line ofτ ’s compatible with
equation (3.9c) which means thatc must be zero on this line, given that the line below this
line consists only of vanishingτ ’s. Let us assume that theτ -functions on thec = 0 line
have the valuesφn. From (3.9a, b) we have

φn+1φn−1 = znφ2
n (4.3)

(sincec = 0). Moreover, we can freely choose two of theφ’s to be equal to unity, sayφn−1

andφn. In this case we haveφn+1 = zn, φn−2 = zn−1, φn+2 = z2
nzn+1, φn−3 = z2

n−1zn−2 . . .

and so on. Next, we assume thatτ˜ n = φnAn, which, using (3.16) leads to the already
obtained resultsxn = An/An−1 and yn = zn/xn = znAn−1/An. In order to obtain the
‘higher’ solutions it is more convenient to return to a notation where the shifts become
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explicit. Starting fromτn at zn andc = 0, we haveτ̂n = τ(zn − 1
2,

1
2), τ˜ n = τ(zn +

1
2,

1
2).

Similarly τn, k-times shifted in the hat-direction, isτ(zn − k/2, k/2), while if k-times
shifted in the down tilde-direction we obtainτ(zn+ k/2, k/2). (Rememberα = 1

2 and thus
zn+1− zn = 1.) The latter has the same prefactorφ(z) asτ(z, 0). Up to this prefactor, this
τ -function can be written as a Casorati determinant as follows

τ(zn + k/2, k/2) = φ(zn)

∣∣∣∣∣∣∣∣∣
An An+1 . . . An+k−1

An+1
. . .

...
...

An+k−1 . . . An+2k−2

∣∣∣∣∣∣∣∣∣ . (4.4)

(Note that τ(zn − k/2, k/2) has An−1 on the antidiagonal, and indeed̂τn = τ˜ n−1 =
φn−1An−1.) What is interesting is that once theτ -functions are expressed in terms of
Casorati determinants we can construct the solutions of both asymmetric d-PI and PIV since
the variablex is (essentially) the same for both equations.

Up to now, we have worked with a generic, nonintegerzn, which means that the Hermite
functions, introduced above, do not degenerate. However, PIV /asymmetric d-PI possesses
two different families of interesting solutions in the particular case ofinteger z0. First,
let us assume that for some value ofn we havezn = 1, which means thatzn−1 = 0. In
this case, all of theφ’s at the left-hand side of the tilde-axis vanish. This means that the
only nonvanishingτ ’s are those lying in aπ/3 sector delimited by the bar- and the negative
tilde-axes. In order to obtain theτ -functions we start by computing theA’s which lie on the
first line parallel to the bar-axis. We chooseAn−1 = 1 andAn = t (so as to be compatible
with (4.2) sincezn = 1). This leads toAn+1 = t2 − 1, An+2 = t3 − 3t , i.e. the Hermite
polynomials. (Note that theA’s with indices inferior ton − 1 cannot be determined, but
since the correspondingφ’s vanish, this indeterminacy is of no consequence.) Using the
A’s as basic elements we can compute theτ ’s through the Casorati (4.4). The latter, we
stress once more, provide the rational solutions to both PIV [16] and asymmetric d-PI.

The second type of special solutions is obtained with a similar assumption. This time
we assume thatzn = 0 which means that all theφ’s to the right-hand side of the tilde-axis
vanish. Thus the nonvanishingτ ’s live in a 2π/3 sector between the negative bar- and the
negative tilde-axes. For the last nonvanishingτ we can choose the normalizationτn = 1
(and thusAn = 1). For the firstvanishing τ , namelyτn+1, we have of courseτn+1 = 0,
becauseφn+1 = 0, butAn+1 does not vanish. Using relation (4.1) we find readily that in
fact An+1 = t sincezn = 0, and this is indeed compatible with (4.2). We can downshift
both (4.1) and (4.2) and obtain a first-order differential equation forAn−1. We find

An−1 = −et
2/2E with

dE

dt
= e−t

2/2 (4.5)

i.e.E is an error-function [17]. OnceAn−1 is obtained, we can compute all of the remaining
A’s by simple differentiation through (4.2) and thus this solution of PIV /asymmetric d-PI
involves nothing but error-functions and exponentials. Again, as in the case of the Hermite
polynomials, the construction of the ‘higher error-functions’ solutions is straightforward if
one uses the Casorati (4.4).

All of the solutions we have obtained up to now belong to the linearizable class which
exist for integer and half-integer values ofc. Whenever the independent variablez also
takes integer values (this means that the offsetz0 of the origin must be an integer) the
solution either involves the error-function or even becomes rational. However, these rational
solutions are not the only ones for PIV /asymmetric d-PI. Another family of rational solutions
does exist, outside the linearizable class. These rational solutions exist for integerz andc
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Figure 3. The simplestτ -functions for the construction of rational solutions. The◦ denotes
the origin of thez, c coordinates.

of the formc = m− σ/3 with integerm, and also for half-integerz andc = m+ σ/6, with
σ = 1 or σ = −1. In figure 3 (drawn forσ = 1) we present the simplestτ -functions of these
rational solutions. It is clear that through a global scaling and the two available gauges we
can choose the threeτ -functions nearest to the origin to have valuesτ = 1. Next we have the
three next-nearest neighbours which are all taken to be equal (which means that the solution
is of codimension two), and depend in principle on the parametert . Since the bilinear
equation (3.9) does not involvet , we can take this common value arbitrarily. Returning
from the τ ’s to the x, y, r we reconstruct (3.1) we obtain on the right-hand side instead
of t the triple of the assumed common value of theτ ’s. Thus this value must be exactly
t/3. Using these seed solutions we can construct the higherτ -functions by iterating (3.9).
Because (3.9) is a Hirota–Miwa equation satisfying the singularity confinement criterion the
obtainedτ ’s turn out to be polynomials int , i.e. the necessary factorizations do occur. Note
that since both figure 3 and (3.9) are invariant under a±2π/3 rotation, this will be true
of the wholeτ -plane. Thus one hasτ(z, c) = τ((−z ± 3c)/2, (−c ∓ z)/2) (recall that the
orthonormal values of the coordinates are 2z/

√
3 and 2c respectively). On the other hand

(3.9) does not have a reflection symmetry and thus in generalτ(−z, c) 6= τ(z, c) though a
relation exists between these quantities namely,

τ(−z, c; t) = (−i)Nτ(z, c; it) (4.6)

whereN is their common degree. We obtain the followingτ ’s:

τ( 1
2,

1
6) = τ(− 1

2,
1
6) = τ(0,− 1

3) = 1 (4.7a)

τ(0, 2
3) = τ(1,− 1

3) = τ(−1,− 1
3) = t/3 (4.7b)

τ(1, 2
3) = τ( 1

2,− 5
6) = τ(− 3

2,
1
6) = t2/9+ 1

3 (4.7c)

τ(−1, 2
3) = τ(− 1

2,− 5
6) = τ( 3

2,
1
6) = t2/9− 1

3. (4.7d)

From now on we will use the shorthandT = t2/3:

τ(± 1
2,

7
6) = τ(± 3

2,− 5
6) = τ(∓2,− 1

3) = (T 2± 2T − 1)/9 (4.7e)

τ(2, 2
3) = τ(−2, 2

3) = τ(0,− 4
3) = t (T 2− 5)/27 (4.7f)

τ(± 3
2,

7
6) = τ(±1,− 4

3) = τ(∓ 5
2,

1
6) = (T 3± 5T 2+ 5T ± 5)/27 (4.7g)

τ(0, 5
3) = τ( 5

2,− 5
6) = τ(− 5

2,− 5
6) = (T 4− 14T 2− 7)/81 (4.7h)
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τ(±1, 5
3) = τ(±2,− 4

3) = τ(∓3,− 1
3) = t (T 4± 8T 3+ 14T 2− 35)/243 (4.7i)

τ(± 5
2,

7
6) = τ(± 1

2,−11
6) = τ(∓3, 2

3)

= (T 5± 5T 4− 10T 3∓ 50T 2− 75T ± 25)/243 (4.7j)

τ(±2, 5
3) = τ(± 3

2,−11
6) = τ(∓ 7

2,
1
6)

= (T 6± 14T 5+ 65T 4± 140T 3+ 175T 2± 350T + 175)/36 (4.7k)

τ(± 1
2,

13
6 ) = τ(±3,− 4

3) = τ(∓ 7
2,− 5

6)

= (T 7± 7T 6− 21T 5∓ 175T 4− 245T 3± 245T 2− 735T ∓ 245)/37 (4.7l)

τ( 7
2,

7
6) = τ(− 7

2,
7
6) = τ(0,− 7

3) = (T 8− 60T 6+ 550T 4− 5500T 2− 1375)/38 (4.7m)

τ(± 3
2,

13
6 ) = τ(± 5

2,−11
6) = τ(∓4,− 1

3)

= (T 8± 20T 7+ 140T 6± 420T 5+ 350T 4∓ 980T 3

−4900T 2∓ 4900T + 1225)/38. (4.7n)

Note in that (4.7f ), (4.7h) and (4.7m) one hasτ(3c, c) = τ(−3c, c), but this is related to
the fact that these points correspond to each other, not only by a reflection, but also by a
rotation by 2π/3, as for (4.7a, b).

In contrast to the case of the linearizable solutions, we cannot give a Casorati form for
the higherτ ’s.

One interesting thing is that the degree of theτ as a polynomial int can be explicitly
constructed. We find that for a point with coordinates(z, c) we haveN = (9d2− 4)/12,
whered is the distance to the origin:d2 = 4z2/3+ 4c2 (since the orthonormal values of
the coordinates are 2z/

√
3 and 2c respectively). This degree, however, does not uniquely

characterize the polynomialτ . We have alreadyτ(1, 2
3) 6= τ(−1, 2

3), though these twoτ ’s
are related by (4.6), as we said earlier. However, the situation is even more complicated
since we can find polynomials with the same degree but without any relation. This occurs
for the first time atN = 16 as can be seen in (4.7m, n).

5. Conclusion

This paper deals with the derivation of the asymmetric d-PI equation starting from the
continuous PIV . This relation is not limited to these particular equations. As a matter of
fact, all of the discrete,differencePainlev́e equations can be obtained from the Schlesinger’s
of the continuous ones. This leads quite naturally to the Lax pair of the d-P’s. Moreover this
procedure produces the most general form of the d-P here the ‘asymmetric’ d-PI: no degree
of freedom is lost. This construction explains the property of self-duality and provides
the basis of the classification of the d-P’s. However one must keep in mind that for the
full classification ofall the d-P’s one may have to consider higher (continuous) Garnier
problems. Moreover there exists a class of discrete equations, the (multiplicative)q-P’s
which are outside this approach. One interesting result of the self-dual approach is that the
Hirota–Miwa equation is omnipresent. This is in perfect parallel to the appearance of the
Toda equation in Okamoto’s description ofτ -sequences [18]. Finally the parallel description
of the continuous and discrete Painlevé equations we presented here allows a simultaneous
construction of the special solutions of both. It should be interesting to extend this approach
to the remaining discrete Painlevé equations.
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